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1 ABSTRACT 

2 The role of mesoscale eddies is crucial for the ocean circulation and its energy budget. The 

3 sub-grid scale eddy variability needs to be parametrized in ocean models, even at so-called 

4 eddy permitting resolutions. Porta Mana and Zanna (2014) propose an eddy parametriza-

5 tion based on a non-Newtonian stress which depends on the partially resolved scales and 

6 their variability. In the present study, we test two versions of the parametrization, one de-

7 terministic and one stochastic, at coarse and eddy-permitting resolutions in a double gyre 

8 quasi-geostrophic model. The parametrization leads to drastic improvements in the mean 

9 state and variability of the ocean state, namely in the jet rectification and the kinetic-

10 energy spectra as a function of wavenumber and frequency for eddy permitting models. 

11 The parametrization also appears to have a stabilizing effect on the model, especially the 

12 stochastic version. The parametrization possesses attractive features for implementation in 

13 global models: very little computational cost, it is flow aware and uses the properties of the 

14 underlying flow. The deterministic coefficient is scale-aware, while the stochastic parameter 

15 is scale- and flow-aware with dependence on resolution, stratification and wind forcing. 
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16 1. Introduction 

17 Ocean mesoscale eddies, with scales of 10–100 kilometres, are turbulent features in the 

18 ocean derived from barotropic and baroclinic instabilities, and are strongly influenced by 

19 wind forcing and stratification. Eddies play a key role in ocean circulation, including tracer 

20 transport, mixing and stirring, and actively participate in energy transfer between scales. 

21 The mesoscale eddy energy is particularly enhanced in the vicinity of western boundary 

22 currents and their extension (e.g. Gulf Stream and Kuroshio), and in the Southern Ocean. 

23 Eddies are crucial in the feedback of energy to the large-scale flow (e.g., Scott and Arbic 2007) 

24 and in maintaining the jet extension via upgradient momentum fluxes leading to sharpening 

25 of gradients (Greatbatch et al. 2010). 

26 Climate models from the Coupled Model Intercomparison Project (CMIP) archive (Tay-

27 lor et al. 2012) used for the last Intergovernmental Panel on Climate Change (IPCC 2013) 

28 have too coarse horizontal resolution to resolve these eddies. The effect of eddies on the 

29 large scale is parametrized in such coarse resolution models using the Gent-McWilliams 

30 parametrization (Gent and McWilliams 1990; Gent et al. 1995). The parametrization has 

31 shown great success in reducing spurious convective instabilities in coarse-resolution mod-

32 els. The parametrization mimics the effects of baroclinic instability, converting available 

33 potential energy into kinetic energy, and acts on buoyancy and passive tracers, but ne-

34 glects eddy Reynolds stresses and sub-grid scale fluctuations. The horizontal resolution of 

35 the most recent generation of global climate models has increased to a scale close to the 

36 Rossby radius of deformation. These models, often called eddy-permitting, are therefore 

37 starting to successfully capture some of the mesoscale eddy behaviour, especially at low-

38 and mid- latitudes. However, eddy-permitting models remain unsuccessful at resolving the 

39 full mesoscale eddy field (Gnanadesikan and Hallberg 2000; Hallberg 2013) and its interac-

40 tion with the large scales, and might not be able to do so in the near feature (Fox-Kemper 

41 et al. 2014). Therefore parametrizing sub-grid eddies, especially in eddy-permitting models, 

42 remains an important topic of research, as the previous generation of parametrizations, de-
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43 rived for coarse-resolution models, might not be able to successfully mimic the effects of the 

44 unresolved scales on the large-scale flow. 

45 Sub-grid parametrization at eddy-permitting resolution is necessary not only to represent 

46 the unresolved scales but also to maintain numerical stability. Numerical dissipation is often 

47 achieved using Laplacian viscosity (or diffusion) with too large coefficients, or using hypervis-

48 cous parametrization (Holloway 1992; Frisch et al. 2008) or biharmonic closure (Smagorinsky 

49 1963; Leith 1990; Griffies and Hallberg 2000) which dissipates enstrophy at the grid scale 

50 near the deformation radius and scales with model resolution. However, recent studies have 

51 shown that hyperviscosity, in addition to representing a direct enstrophy cascade (Bachman 

52 et al. 2016), spuriously dissipates energy at small scales (Arbic et al. 2007; Jansen and Held 

53 2014). Parametrization of sub-grid scale eddies for eddy-permitting regimes are therefore 

54 needed to either correct the spurious loss of energy resulting from the use of hyperviscosity 

55 (including modified hyperviscosity; Fox-Kemper and Menemenlis 2008), or to replace hyper-

56 viscosity altogether. The aim of our paper is to introduce an eddy parametrization, derived 

57 for eddy-permitting models, that makes use of the resolved variability, mimics the behaviour 

58 of Reynolds stresses such as sharpening ocean jets, scales with resolution and the flow, and 

59 feeds back energy lost due to viscosity. 

60 Jansen and Held (2014) propose to re-inject the energy lost at small scales using a negative 

61 viscosity determined by an energy equation following Eden (2010). Filtering of the veloc-

62 ities, as done for example in the Lagrangian-averaged Navier-Stokes-α model (Holm and 

63 Wingate 2005; Holm and Nadiga 2003), or the nonlinear gradient approximation (Nadiga 

64 and Bouchet 2011) have shown promising results (see PMZ14 and Anstey and Zanna (2016) 

65 for comparisons between our proposed schemes and these studies). However, recent studies 

66 (Graham and Ringler 2013) highlighted that these parametrizations can lead to a build-up of 

67 enstrophy at small scales and to numerical instability. Other approaches at eddy-permitting 

68 resolutions have argued for the use of a stochastic term for upgradient momentum fluxes 

69 and energy backscatter in spectral models (Kraichnan 1976; Frederiksen and Davies 1997; 
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70 Duan and Nadiga 2007; Nadiga 2008; Kitsios et al. 2012; Grooms and Majda 2013). The 

71 sub-grid forcing is generally constrained by an energy spectrum. In quasi-geostrophic models 

72 the need for upgradient momentum closures based on a stochastic model was also pointed 

73 out (Berloff 2005b, 2015, 2016). However, all approaches require some a priori knowledge of 

74 sub-grid eddy statistics. 

75 Here we implement a parametrization proposed by Porta Mana and Zanna (2014, re-

76 ferred to as PMZ14). In PMZ14 we diagnosed a relationship between the missing eddy 

77 forcing and a non-Newtonian stress divergence (Ericksen 1956; Rivlin 1957). The missing 

78 forcing is defined as the PV eddy flux divergence resulting from a high-resolution eddy re-

79 solving model compared to an eddy permitting model. The non-Newtonian stress divergence 

80 depends on the Lagrangian rate of change of the potential vorticity (PV) gradient and its 

81 local deformation. The relationship between the missing eddy forcing and a non-Newtonian 

82 stress divergence was inspired by general principles of potential vorticity conservation, frame-

83 invariance, differential memory (Truesdell and Noll 2004) and symmetry properties of the 

84 stress tensor (Bachman and Fox-Kemper 2013). The relationship, more intuitively, is based 

85 on an argument that in eddy-permitting models the rate of strain, eddy shape and orien-

86 tation, and the PV gradient can be used to mimic the evolution of the eddy PV forcing 

87 (Nadiga 2008; Anstey and Zanna 2016). The work argued that the parametrization could 

88 be efficient in a deterministic mode, with a coefficient for the parametrization that scales 

89 with model resolution. In addition, a stochastic parametrization was also presented, with a 

90 stochastic forcing term whose probability is conditional on the non-Newtonian forcing, wind 

91 forcing, stratification, and model resolution. 

92 This paper is structured as follows. In Section 2 we briefly present the quasi-geostrophic 

93 model used in the current study. In Section 3 we discuss two implementations of the 

94 parametrization, one deterministic and one stochastic. In Section 4 we present the results of 

95 the two different implementations for the mean flow and variability. Section 5 is a discussion 

96 of the impact of the parametrized forcing on the momentum, energy and enstrophy budgets 
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97 and presents ways forward for implementation in primitive-equations models. We briefly 

98 conclude in section 6. 

99 2. Model Setup 

100 The model used in the present study, PEQUOD, solves the forced dissipative baroclinic 

101 quasi-geostrophic (QG) potential vorticity (PV) equation on a beta plane in a square basin 

102 (e.g., Berloff 2005b,a). The main setup is similar to the one used in Porta Mana and Zanna 

103 (2014, PMZ14). The model is composed of three isopycnal layers with thicknesses Hm (with 

104 m = 1, 2, 3 for the upper, middle and bottom layer, respectively). For each layer m, the 

105 prognostic equation solved for the potential vorticity q is given by 

Dqm ∂qm 
+ F wind + F eddy 

106 = + um · rqm = Dm , (1) 
Dt ∂t m m 

107 with 
∂ 

� 
f0
2 ∂ψm 

� 

108 qm = r 2ψm + βy + . (2) 
∂z N2 ∂z 

The planetary vorticity is f = , = 
� 
∂ , ∂ 

� 
is the horizontal gradient, N is 109 f0 + βy r 

∂x ∂y 

110 the Brunt-Väisälä frequency of the mean density stratification and ψ is the streamfunction 
�
−∂ψm ∂ψm 

� 
111 derived from the non-divergent velocity such that um = , . 

∂y ∂x 

112 The dissipation term is Dm = −rr2ψδm,3 − νr6ψm, where δm,i is the Kronecker delta 

113 function. The first term parametrizes the presence of a bottom Ekman layer with a bottom 

114 drag coefficient r. The second term is a horizontal biharmonic viscosity term, with viscosity 

115 coefficient ν, which scale-selectively dissipates enstrophy near the grid-scale. Note that 

116 PMZ14 used a Laplacian viscosity term rather than a biharmonic term for high-resolution 

117 and eddy-permitting runs (but not for coarse resolution runs). The use of hyperviscosity 

118 in the present study is to allow a setup that mimics current eddy-permitting ocean model 

119 setups, and ensures small-scale dissipation and numerical stability (we struggled to keep the 

120 model stable when using the deterministic parametrization; see Sec. 3). The hyperviscous 
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121 term was calculated at the previous timestep for practical reasons (see Section 3b). 

122 The forcing Fm, applied to the upper layer, is the curl of the wind stress τ : 

(r× τ)
F wind z 

123 m (x, y) = δm,1, (3) 
ρ0 H1 

124 where ρ0 is the reference density. The wind stress curl profile is identical to PMZ14 and spins 

125 up two gyres separated by a strong meandering jet emanating from the western boundary. 

126 The term F eddy is the eddy parametrization, which can take a deterministic or a stochastic m 

127 form. We use different model configurations defined as follows: 

128 i. The “truth”: a high-resolution run with 7.5 km horizontal resolution. The eddy forcing 

129 term F eddy , in Eq. 1, is set to 0. m 

130 ii. Low-resolution unparametrized runs: runs at eddy-permitting resolution with hori-

131 zontal grid-spacing of 30 km and 60 km; and a coarse-resolution run at resolution of 

132 120 km. No parametrization of eddy forcing is included, i.e. F eddy is again set to 0. m 

133 iii. Low-resolution parametrized runs: Same as in (2), except for F eddy being non-zero. m 

134 The term F eddy has a spatial and temporal dependence on the flow, which can be m 

135 deterministic or stochastic as defined in Section 3. 

136 The length of the integrations from rest to statistically steady state is 410 years. All simula-

137 tions presented are numerically converged and are solved using centered-leapfrog with RAW 

138 filter (Williams 2009) and a modified Arakawa advective scheme (Arakawa 1966). Additional 

139 experiments using different numerical schemes led to similar results to the ones presented 

140 in the following sections. We output the data daily (as snapshots), with all steady states 

141 and variance calculations done using the last 200 years of model integration. The common 

142 model parameters for all runs are defined in Table 1 while the differing model parameters 

143 for various resolutions are listed in Table 2. 

144 Figure 1 shows the statistically steady streamfunction ψ for the high resolution truth 

145 (panel a) and the 30 km-resolution unparametrized model (panel b). A few differences 

146 between the runs include the absence of a strong and narrow eastward jet at low resolution 
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147 compared to the truth; and a too far south separation point at the western boundary. The 

148 eddy-permitting simulations at 30 km and 60 km (the latter not shown) generate some eddies 

149 via barotropic and baroclinic instabilities but with fewer filaments and weaker turbulence 

150 compared to the eddy resolving run (cf Fig. 2a and b). The potential vorticity snapshot at 

151 low resolution also hints at some numerical instability near the jet, due to the appearance 

152 of sharp features of alternating sign with spatial scale of the model gridscale (30km). The 

153 differences in the simulations arise as a result of the small Reynolds number at low resolution, 

154 due to the increased horizontal grid box size and viscosity. 

155 3. Parametrization of sub-grid mesoscale eddies 

156 In this section we introduce the parametrization proposed by PMZ14 and discuss the 

157 deterministic and stochastic implementations in the baroclinic QG model of Section 2. In 

158 the remainder of the paper we omit the layer subscript m for conciseness. 

159 a. PMZ14 parametrization 

160 In PMZ14 we postulate that the divergence of the sub-grid eddy PV stress in QG (S∗) 

161 reflecting the missing forcing due to truncated nonlinear advection and increased dissipation 

162 between the truth and a low-resolution run can be well approximated by 

Dq 
F eddy 

163 = κr · r , (4) 
Dt 

164 where κ is a scalar, independent of space or time. The value of κ is estimated by coarse-

165 graining high-resolution simulations onto a coarse resolution grid. Unlike common closures, 

166 the parameter κ is not a diffusivity or viscosity coefficient, as it has units of length squared. 

167 As discussed in PMZ14, the proposed closure, obtained by imposing several mathematical 

168 and physical constraints such as frame-invariance and memory, can be expressed as a non-
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169 Newtonian second order Rivlin-Ericksen-like stress (Ericksen 1956; Rivlin 1957) using 

D T Dq 
170 rq + ru · rq = r . (5) 

Dt Dt 

171 where ru is a rank-2 tensor (i.e., a matrix) given by 

⎦ . 

⎤
⎥

⎡ 

⎢⎣ 
∂u ∂v 
∂x ∂x T ru = (6) 
∂u ∂v 
∂y ∂x 

172 Qualitatively, the parametrization can amplify or weaken existing gradients of PV. The 

173 parametrization is mainly applicable at eddy-permitting resolution in which instabilities can 

174 create meanders and deformations of the flow field (Fig. 2b) which are required for the 

175 parametrization to perform most effectively. 

176 The robustness of the relationship between the diagnosed eddy forcing (S∗) and the 

177 proposed parametrization is thoroughly quantified in PMZ14 by constructing probability 

178 distribution functions (PDFs) and conditional probability distribution functions (cPDFs)1 . 

179 The diagnosed eddy forcing PDFs conditional on the expression (4) are used to assess the 

2 Dq 
180 degree to which the “true” eddy forcing correlates with r

Dt for each layer. PMZ14 find, 

181 using the conditional PDFs P(S∗| r2 Dq ), a very strong linear correlation between the two 
Dt 

2 Dq 
182 quantities, such that the mean of the PDFs of the eddy forcing term conditional on r

Dt 

183 can be used as a deterministic parametrization using a constant coefficient κ, where κ is 

184 negative with no spatio-temporal dependence.2 

185 The correlation can exhibit large deviations from its mean for large values of eddy PV 

186 forcing (i.e., the PDFs are not delta functions). Excursions in the eddy forcing can reach 

187 more than 40% of its mean value. A single constant coefficient, or a single value of the 

188 parametrized eddy forcing, therefore cannot adequately represent the behaviour of highly 

2 Dq 
189 turbulent eddying regions. Large values of eddy forcing parametrization, r

Dt , describe 

1Similar relationship are found if the truth is run at resolution of 2.5km rather than at 7.5km. 
2A more thorough investigation of κ as a tensor rather than a scalar, taking into account the anisotropy 

of the stress is left for a follow-up study. 
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190 large growth rate of nonlinear instabilities developing in the flow. Such nonlinear processes 

191 can exhibit large fluctuations which are reflected in skewed PDFs, as found in PMZ14. 

192 Therefore a statistical (stochastic) parametrization of ocean eddies might be more appro-

193 priate when attempting to capture the effect of eddies in highly turbulent jet regions. In 

194 the following two sections we describe the implementation of a deterministic and stochastic 

195 version of the eddy parametrization in the QG model. 

196 b. Deterministic Parametrization 

197 Assuming that a constant (and negative) value for κ can be used in (4), the QG model 

198 equation with the deterministic eddy parametrization is given by 

Dq ∂q Dq 2 6ψ + F wind 
199 ≡ + r · (uq) = κr − νr . (7) 

Dt ∂t Dt 

200 The parametrized equation can be rewritten as 

2
� Dq 6ψ + F wind 

�
1 − κr = −νr , (8) 

Dt 

201 or 
Dq 6ψ + F wind

� 
. = 

�
1 − κr 2

�−1 �−νr (9) 
Dt 

202 Using coarse-grained high-resolution experiments, PMZ14 observe that the value of κ, which 

203 was found to be negative, only scales with the grid size of the coarse-resolution model. The 

204 operator acting on the PV tendency and advective terms, (1 − κr2), behaves as a roughener 

205 of total forcing in the PV equation. This operator could be viewed as a filter acting to 

206 replace the scales of motion that are truncated by the coarse grid scale of the model, with 

207 the strength of the filter being determined by the value of κ. 

208 Due to the singularity present at wavenumbers K2 = −1/κ, inverting the operator 

209 (1 − κr2) to solve Eq. 9 is not feasible. Instead, we numerically solve Eq. 7 by evaluat-

2 Dq 
210 ing κr

Dt at the previous timestep, so that the parametrization is implemented as 

∂q Dq 2 6ψ + F wind 
211 + u · rq = κr (t − Δt) − νr , (10) 

∂t Dt 
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212 where Δt is the model timestep increment (the hyperviscous term is also commonly cal-

213 culated at the previous time step for numerical stability) and other terms are calculated 

214 at time t. The implementation of the deterministic parametrization comes with the same 

215 computational cost as biharmonic viscosity. The implementation only requires saving the La-

216 grangian (material) derivative of potential vorticity at the previous timestep and calculating 

217 its Laplacian. 

218 Using a large range of numerical simulations under different forcing and dissipation and 

219 different geometric configurations, PMZ14 estimate the mean κ value as − (αΔx)2, where 

220 α ≈ 0.45. To avoid the singularity present at wavenumbers K2 ≈ −1/ (αΔx)2, we adjust 

221 the value of κ such that |κ| = (0.31Δx)2 in order to ensure numerical stability (see Sect. 5a 

222 for further discussion). 

223 c. Stochastic parametrization 

224 Even if the deterministic parametrization shows a useful relationship between the eddy 

225 properties and the large scale flow, it remains difficult to predict the behaviour of turbulent 

226 flow with a single deterministic relationship based on the resolved scales. The turbulent 

227 nature of the flow field suggests the use of a non-deterministic closure to describe the eddy-

228 mean flow interaction. PMZ14 showed that probability distribution functions of the eddy 

2 Dq 
229 forcing conditional on the large scale flow, r

Dt , can be reconstructed given solely infor-

230 mation from the coarse-resolution QG model. One main characteristic is that the standard 

231 deviation and the higher-order moments of the PDF increase with the Reynolds number and 

232 decrease with the coarse-graining grid box size. 

233 In the eddy-permitting range considered here, the standard deviation can be expressed 

to a very good approximation as σ = γ τ0 , with γ = 7.9 × 10−4 (a non-dimensional 234 
ΔxHρ0 

235 parameter). The standard deviation scales linearly with the wind stress and exhibits an 

236 inverse dependence on the resolution. The standard deviation also scales linearly with the PV 

σ2 H 
237 variance, such that σ = γq Δ

q 

x with γq = 1.7 (also non-dimensional) and is valid whether we 
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251 

238 consider wind or buoyancy forcing (see PMZ14 for sensitivity to forcing, resolution and model 

239 configuration). Note that using coarse-graining diagnostics, we find that the maximum value 

240 of σ is always proportional to the mean value of the eddy forcing, with a scale-independent 

241 proportionality constant, such that σ ∝ Δx2 (not shown). Therefore, as Δx goes to zero, the 

242 mean and standard deviations also tend to zero. The standardized skewness and kurtosis 

243 (i.e., skewness and kurtosis scaled by the standard deviation) were shown to be roughly 

244 independent of model parameters and found to be O(1), with values µ3 ≈ 0.61 and µ4 ≈ 

245 1.4, respectively. The resolved quantities therefore fully determine the standard deviation, 

246 skewness, and kurtosis of the PDFs. 

247 For each run, we use the relationships found in PMZ14 and described above to reconstruct 

248 the PDFs, based on a maximum entropy procedure (Mead and Papanicolaou 1984), and use 

249 them as the basis for a stochastic parametrization. The implementation of the stochastic 

250 parametrization can thus be written as 

∂q 
� 

2 Dq 
� 

6ψ + F wind + u · rq = F r (t − Δt), Δx, H, τ0 − νr , (11) 
∂t Dt 

252 where the stochastic term F is sampled according to the reconstructed conditional PDFs, 

253 with spatial and temporal scales, Δxstoc and Δtstoc, respectively. The scales determine 

254 intervals at which the stochastic term F is selected before being recalculated. In all the 

255 runs presented here, we diagnose the value of r2 Dq (t − Δt) at every grid box (Δxstoc = Δx), Dt 

256 then sample F from the corresponding conditional PDFs P(S∗| r2 Dq ); the value of F is kept 
Dt 

257 for Δtstoc = 1 day. The timescale is chosen by using the coarse-grained information which 

258 showed a decorrelation time-scale of about 1 day for the eddy forcing term. The results 

259 deteriorate if the timescale is too short (on the order of a few timesteps), which turns the 

260 parametrization into a simple AR1 process and is not an accurate representation of the eddy 

261 forcing (see Berloff 2005b). It is important to reiterate that the stochastic parametrization 

262 is not equivalent to simply adding random fluctuations: the stochastic term is sampled from 

263 a PDFs given a value of the local r2 Dq (t − Δt); it is therefore strongly dependent on the 
Dt 

264 resolved flow field. For this implementation there is no rescaling of the mean or any other 
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265 moments of the PDFs. All results presented in the paper are using the above implementation. 

266 The computational cost associated with this stochastic parametrization is about 10% more 

267 compared to the deterministic parametrization. The cost can be reduced by changing the 

268 spatial and temporal decorrelation of the stochastic term (Δxstoc and Δtstoc, respectively) 

269 or by slightly changing the implementation. 

270 A slightly faster implementation can be introduced. The following implementation, simi-

271 larly to the deterministic runs, requires tuning of the mean of the PDFs to ensure numerical 

272 stability by avoiding the singularity discussed in Sect.3b. This additional implementation is 

273 briefly outlined below, however readers can skip directly to Sect. 4 for the results of the sim-

274 ulations described above. We can decompose the eddy parametrization into a deterministic 

275 and stochastic term such that 

F eddy 2 Dq ∗ 
h

2 Dq 
i 

= κr (t − Δt) + s × σ r (t − Δt) . 
Dt Dt 

The deterministic part, κr2 Dq (t − Δt), is calculated as described in Sect. 3b using |κ| 276 = 
Dt 

277 (0.31Δx)2 . The stochastic term is determined as follows. The standard deviation σ of the 

2 Dq 
278 cPDFs scales with r

Dt (t − Δt), and skewness and kurtosis of the cPDFs are standardized 

279 moments such that the shape of the cPDFs is self-similar. We can therefore select a value 

280 s ∗ from a single rescaled conditional PDF with zero mean, standard deviation of one, and 

281 constant moments µ3, µ4 such that P(s ∗| µ = 0, σ = 1, |µ3|, µ4). The rescaled cPDF is 

2 Dq ∗ 2 Dq 
282 independent of r . We can then rescale s by the standard deviation of r (t − Δt), 

Dt Dt h
2 Dq 

i 
283 σ r

Dt (t − Δt) . With this implementation, there is no need to first check the value of 

284 r2 Dq (t− Δt) and then choose from a specific conditional PDF. The results of this stochastic 
Dt 

285 implementation are slightly closer to the deterministic simulations than to the stochastic 

286 simulations described using Eq. 11, possibly due to the reduction in κ necessary for numerical 

287 stability. 
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288 4. Results 

289 In this section, we analyse and compare the results of deterministic and stochastic im-

290 plementations at different horizontal resolutions, with a focus on runs performed at 30 km 

291 resolution. 

292 Figure 1 shows the statistically steady streamfunction ψ for the high resolution truth 

293 (7.5 km horizontal resolution) and for the unparametrized and parametrized eddy permitting 

294 runs at 30 km horizontal resolution. The parametrized runs show clear improvement in 

295 the steady state streamfunction for the deterministic (Fig. 1c) and stochastic (Fig. 1d) 

296 implementations, compared to the unparametrized run at the same resolution (Fig. 1b). 

297 The steady state streamfunction for the parametrized simulations are closer to the truth 

298 (Fig. 1a) than the unparametrized run. The strength of the subtropical gyre is marginally 

299 increased in the parametrized runs to 14.71 Sv and 15.22 Sv, compared to 14.48 Sv in the 

300 unparametrized run and 15.54 Sv in the high resolution run. The strength of the subpolar 

301 gyre is significantly improved from -17.40 Sv in the unparametrized run, to -18.92 Sv and -

302 21.6 Sv in deterministic and stochastic runs, compared to -24.75 Sv in the high resolution run. 

303 Another feature is the improvement of the separation point of the jet in the parametrized 

304 runs. In the unparametrized run, the jet separates from the western boundary 300 km 

305 further south than in the high resolution. In the deterministic and the stochastic runs, the 

306 separation point is located only 210 km and 60 km south of the separation point in the high 

307 resolution run, respectively. 

308 Snapshots of potential vorticity for the different model runs, taken after 250 years of 

model run, are shown in Fig. 2, only for illustrative purposes. The unparametrized 309 run 

310 shows the presence of weak turbulence and also some grid scale numerical noise (panel 

311 b). However the high resolution (panel a) and parametrized runs (panels c-d) exhibit a 

312 lot more turbulence and filamentation. The introduction of the parametrization results in 

313 the enhancement of gradient of potential vorticity but also attenuates the numerical noise 

314 present in the unparametrized simulation (see Sect 5 for discussion). 
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315 Figure 3 shows the steady state kinetic energy as a function of latitude at x = 120km 

316 and x = 300km, further highlighting the presence of a strong jet detaching from the western 

317 boundary in the high-resolution simulation (black). The zonal eddy momentum stress diver-

318 gence, r · u0u0, is shown in panels (c)-(d) for the same longitudes as panels (a)-(b), where 

319 primes are anomalies from the time mean denoted by an overline (Waterman and Jayne 

320 2012). In the unparametrized simulation (blue), the jet is weaker and broader than in the 

321 high resolution simulation. The deterministic (red) and stochastic (grey) parametrizations 

322 lead to a sharpening of the jet and an increase in the zonal velocity (hence in the kinetic 

323 energy) in the core of the jet. The jet sharpening is a direct consequence of the parametriza-

324 tion, which enhances the eddy momentum stress divergence. Another notable impact of 

325 the parametrization is to inject energy back into the large-scale flow, as shown in Fig. 4. 

326 The introduction of the eddy closure vastly improves the spectrum of kinetic energy over 

327 all wavenumbers by reducing the amount of energy dissipated at small scales and allowing 

328 energy spuriously lost to be backscattered. 

329 This can further be explored by considering the turbulent energy budget (Arbic et al. 

330 2007; Larichev and Held 1995; Scott and Arbic 2007; Straub and Nadiga 2014). As shown 

331 previously by these authors, the spectral budget for total energy in the QG model can be 

332 expressed as the sum of the contribution in Fourier space from forcing, bottom friction, 

333 hyperviscosity and from the redistribution of energy across scales from the spectral transfer 

334 of kinetic and available potential energy (APE). Figure 5 shows the statistically steady state 

335 budget of the different model simulations. For the high-resolution run at a resolution of 7.5km 

336 (panel a), the spectral characteristics are reminiscent of other QG and primitive equation 

337 models, and of baroclinic turbulence (Charney 1971; Rhines 1977; Salmon 1978). Forcing 

338 and dissipation mostly balance each other, and the spectral transfer of kinetic and APE 

339 summing up to zero for all wavenumbers. The transfer of kinetic energy has a large negative 

340 lobe (sink of kinetic energy) at higher wavenumbers, and a large positive lobe (source of KE) 

341 at smaller wavenumbers. Integrating this transfer (starting from large wavenumbers) would 
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342 produce a single, large negative lobe representing a net inverse transfer of energy to larger 

343 scales. APE is extracted at large scales and transferred down-scale toward the deformation 

344 scale. At the deformation scale, energy is converted to kinetic energy and this kinetic energy 

345 is transferred to large scales. Our parametrization is attempting to reproduce this energetic 

346 behaviour. There is no transfer of kinetic energy toward small scale, therefore as expected 

347 the term due to hyperviscosity is very small at a resolution of 7.5km. 

348 At a resolution of 30km (Fig. 5b), without an eddy parametrization, our results are similar 

349 to Scott and Arbic (2007); Hallberg (2013); Jansen and Held (2014) with energy being lost 

350 near the grid scale (roughly the deformation scale) due to hyperviscosity, and therefore only 

351 part of the energy being fluxed towards small scale as APE is then fluxed upscale as kinetic 

352 energy. Both the sink of kinetic energy at higher wavenumbers and the source at lower 

353 wavenumbers are significantly smaller compared to the high-resolution case, thus leading 

354 to a reduced inverse transfer of kinetic energy to larger scales. As a consequence, there is 

355 less kinetic energy at large scales and a reduction of the APE being extracted. When the 

356 deterministic parametrization is introduced (Fig. 5c), energy is returned mostly at scales only 

357 somewhat larger than the deformation wavenumber as seeing by the increase in the size of 

358 both the positive and negative lobes in spectral transfer. The most dramatic improvements 

359 are when the stochastic parametrization is introduced (Fig. 5d), a larger portion of kinetic 

360 energy is being fluxed back up to the larger scales and more closely matches the kinetic 

361 energy transfer of the high-resolution simulation. These results are is in agreement with our 

362 other diagnostics. 

363 Figure 6 summarizes the impact of the deterministic and stochastic parametrizations at 

364 different resolutions. The mean-flow error is vastly reduced in the vicinity of the western 

365 boundary current and its extension (cf. panels c-d with b). The deterministic parametrization 

366 leads to the creation of a jet extension, thereby reducing the error in the streamfunction 

367 away from the recirculation region. However, the introduction of the stochasticity vastly 

368 improves the recirculation gyres and leads to an error of less than 1 Sv at any location in 
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369 the basin. At eddy permitting resolutions (30 km and 60 km), the deterministic version of 

370 the parametrization leads to about 50% error reduction, and the stochastic component to a 

371 further 20 to 40%. At coarser resolution (120 km), there is a very small improvement in the 

372 mean flow when the deterministic parametrization is implemented, and there is no added 

373 value to the implementation of stochastic parametrization when considering the mean flow 

374 error. 

375 Despite the limited number of tests at different resolutions, it appears that there is a 

376 cut-off at which stochasticity impacts upon the mean flow compared to the deterministic 

377 parametrization, which is roughly equal to the Rossby radius of deformation. Further tests 

378 will be required to validate the critical or cut-off resolution. Additionally, the reduction in 

379 mean flow error at coarse resolution (120 km) is rather small which is in agreement with our 

380 initial assumption that the parametrization will be successful at eddy-permitting resolution 

381 by reinforcing the existing gradients. 

382 Figures 7 and 8 show that not only the mean flow is improved but also its spatial and 

383 temporal variability. The absence of a meandering jet in the low resolution run without 

384 any eddy closure is reflected by the loss of variance in the center of the domain (Fig. 7). 

385 The deterministic parametrization is shown to improve the variance significantly, especially 

386 at low frequency (Fig. 8). The stochastic parametrization has a positive impact at high-

387 frequency, as expected by the introduction of random fluctuations, but also at low frequency. 

388 Therefore the high-frequency variability of mesoscale eddies can have a significant impact 

389 on modulating low frequency variability (Berloff et al. 2007). 

390 Figure 9 shows the error in variance for the different runs: deterministic, and stochastic 

391 with different moments for the reconstruction of the cPDFs. The ability of the stochastic 

392 parametrization to reinforce or introduce variance is clear at all resolutions, even at very 

393 coarse resolution. There is some benefit to include non-zero skewness and kurtosis of the 

394 cPDFs. For the run at 120 km horizontal resolution, the injection of non-Gaussian stochastic 

395 forcing leads to a non-zero contribution to the variance. The deterministic parametrization, 
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396 on the other hand, increases the variance of the eddy permitting runs only, with no visible 

397 impact for the coarse resolution run. 

398 5. Discussion 

399 In the previous section, we showed that the parametrization improves the energy spec-

400 trum as a function of frequency and wavenumber, and the jet strength and its separation 

401 point, while keeping the model numerically stable. We now discuss several aspects of vortic-

402 ity, energy and enstrophy budget to provide some insights concerning the results described 

403 above. We also propose an implementation for a primitive equation model based on our 

404 results. Most aspects are discussed in the context of the deterministic parametrization but 

405 the stochasticity is discussed as well since its inclusion is beneficial to the representation of 

406 the mean and variance. 

407 a. Vorticity forcing and Stability Criteria 

408 Consider the parametrized potential vorticity equation in spectral space by taking the 

409 Fourier Transform of (Eq. 7), we obtain (similarly to Eq. 12 in PMZ14) 

Dq Dq 
F wind 

c
= |κ|K2 

c
+ K6νψ b+ b , 

Dt Dt (12) 410 
1 

= 
�
K6νψ b+ F bwind

� 
, 

1 − |κ|K2 

411 where κ < 0, i.e. κ = −|κ|; f(K, t) is the spatial Fourier transform of f(x, t), x is the b
√ 

412 position vector, K = (k, l) is the total 2D wavenumber with modulus K = |K| = k2 + l2 , 

and rf = iK fb. The argument (K, t) is omitted for convenience. As the total wavenumber 413 c

414 K increases (i.e., the wavelength decreases), the amplitude of the Fourier transform of PV 

415 forcing increases (see Eq. 12 and Fig. 9 of PMZ14). 

416 The value of κ in the simulations required some tuning to keep the model numerically 

417 stable and this is in part a direct consequence of Eq. 12. The amplitude of the Fourier 
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1 
418 Transform of PV forcing has a singularity at K2 = , for a length scale of 

p
|κ|. However, |κ| 

419 the maximum wavenumber the model can resolve is equal to Kmax = 2π/2Δx = π/Δx. 

420 Therefore avoiding the singularity requires that 1 − |κ|K2 > 0, which using |κ| = (αΔx)2 
max 

421 leads to the condition (αΔx)2 < K2 = Δx2/π2 . The stability condition is thus α < 1/π = max 

422 0.318, justifying the choice of α = 0.31 for numerical stability (rather than the diagnosed 

423 value of roughly 0.45 from PMZ14). 

424 The tuning of κ is also sensitive to the sub-grid viscous dissipation, and the likely build-up 

425 of small scale enstrophy (see below). For a Laplacian viscous term (as used in PMZ14), the 

426 maximum possible values of κ for the deterministic and stochastic implementations are κ = 

427 −(0.27Δx)2 and κ = −(0.29Δx)2, respectively. One can increase κ if the viscosity coefficient 

428 is also increased, but the influence of the parametrization is then damped by the dissipation, 

429 making it therefore inefficient to represent up-gradient momentum fluxes. Numerical stability 

430 is improved by raising the power of the Laplacian operator, which increases the scale-selective 

431 behaviour of the dissipative term, allowing for a stronger forcing with larger values of |κ|. 

432 For the stochastic implementations, the effective value of parametrization (henceforth of |κ|) 

433 is always larger than that of the deterministic case. This reflects the fact that stochastic 

434 fluctuations can have a stabilizing effect on the model solution. As pointed out in Palmer 

435 (2012), the tuning of a stochastic parametrization should not be done starting from the 

436 deterministic version. 

437 b. Relationship of PMZ14 to hyperviscosity 

438 We can approximate the effective viscosity term, i.e. the combination of the biharmonic 

439 viscosity and the RE parametrization, in Eq. 12 as 

1 
Fbν,subgrid =

1 − K2|κ| 

�
K6νψb

� 

= 
�
1 + |κ|K2 + 

�
|κ|K2

�2 
+ 

�
|κ|K2

�3 
+ ... 

��
K6νψb

� 
(13) 440 

∞

= K6νψ b
X 
(|κ|K2)n 

n=0 
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441 using a Taylor expansion 1/(1 − x) = 1 + x + x2 + x3 + · · · , valid for |x| < 1. The subgrid 

442 effective dissipation differs in its dependence on K from that in the unparametrized equation. 

443 The infinite series for the effective viscosity corresponds to a dissipative behaviour on the 

444 Fourier amplitude of Dq/Dt, reminiscent of hyperdiffusive closures (e.g. νr6ψ, νr8ψ ... ), 

445 hence removing energy and enstrophy at small scales. Recall from Eq. 12 that avoiding the 

446 singularity requires the value of κ to be chosen so that |κ|K2 < 1 for any wavenumber K 

447 resolved by the model. We therefore have (|κ|K2)n < 1 for n ≥ 0, and hence the magnitude 

448 of the terms in the series of Eq. (13) decreases with increasing n. The effective viscosity in 

449 spectral space thus corresponds to a series of hyperviscous terms of increasing order, where 

450 the first and largest term is the explicitly specified hyperviscosity (as defined in Sec. 2) and 

451 the subsequent terms could be characterized as higher-order hyperviscous corrections. 

452 Hyperviscous closures are motivated by the desire to enhance dissipation at very small 

453 scales while retaining as much resolved turbulence as possible in the slightly larger scales, 

454 i.e. to create a sharper transition between regions of spectral space in which advective and 

455 dissipative behaviour dominates (Holloway 1992). The addition of higher-order hyperviscous 

456 corrections (in spectral space) should further enhance the dissipation at the smallest resolved 

457 scales, with increasingly larger effect as the scale decreases. The effect of the parametriza-

458 tion can be interpreted as modifying the scale-selectivity of the dissipative term. Unlike 

459 hyperviscosity, the parametrization (Eq. 5) involves nonlinear terms and a temporal deriva-

460 tive. Another interpretation, given in PMZ14 considering the terms in Eq. 5, is to view the 

461 parametrization as acting to enhance or weakens flow parcels depending on their ”history”. 

462 As discussed in Sec. 3, a practical workaround to implement the parametrization is to use 

Dq 
463 

Dt at the previous timestep, so that the timestepping can remain explicit. The parametrized 

464 model equation, (1), can be written as 

Dq 
(t) = D(t) + F wind(t) + F eddy(t − Δt), 

Dt 
465 

= D(t) + F wind(t) + κr 2 Dq 
(14) 

(t − Δt). 
Dt 
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466 Applying (14) recursively we obtain 

Dq 
(t) = D(t) + F wind(t) + κr 2 

� 

D(t − Δt) + F wind(t − Δt) + κr 2 Dq 
� 

(t − 2Δt) 
Dt Dt 

= D(t) + F wind(t) + κr 2 
�
D(t − Δt) + F wind(t − Δt)

� 
467 

Dq 4 

� 

D(t − 2Δt) + F wind(t − 2Δt) + κr 2 

� 

+ κ2 r (t − 3Δt) = . . . 
Dt 

468 leading to 
Dq 

m

2)n 
�
D(t − nΔt) + F wind(t − nΔt)

� 
, 469 (t) = 

X 
(κr (15) 

Dt 
n=0 

470 where for n = 0 we set (κr2)0 ≡ 1. The total forcing of potential vorticity at time t involves 

471 successive applications of the operator κr2 to the wind forcing F wind and dissipation D (as 

472 defined in Sec. 2) at previous times. 

473 We can neglect terms involving r2nF wind, for n ≥ 1, assuming that the wind forcing is 

474 large-scale and constant in time, so that such higher order Laplacians are increasingly small. 

475 The evolution equation (15) can then be written as 

Dq 
m

(t) = F wind(t) − 
X 
(κr 2)nνr 6ψ(t − nΔt) 

Dt 
n=0 

476 
= F wind(t) − νr 

(16) 6[ψ(t) + κr 2ψ(t − Δt) + κ2 r 4ψ(t − 2Δt) + · · · ] 

= F wind(t) − νr 6[ψ(t) − |κ|r2ψ(t − Δt) + |κ|2 r 4ψ(t − 2Δt) + · · · ], 

477 where the bottom drag contribution to D has been ignored, and the last line uses the fact 

478 that κ < 0. In spectral space we then have 

D

D

q

t 
b b bF wind 

479 

c
= + νK6 

h 
ψb(t) + |κ|K2 ψ(t − Δt) + |κ|2K4 ψ(t − 2Δt) + · · · 

i 
(17) 

480 Since Δt 6= 0, the relative signs of ψb(t), ψb(t − Δt), ψb(t − 2Δt)... can differ, and the term 

481 need not be strictly dissipative. This contrasts with the behaviour expected when Dq/Dt is 

482 evaluated at the present timestep (Δt = 0), as the different terms would act as hyperviscosity 

483 (see Eq. 13). However, ψb(t) in most cases would have the same sign as ψb(t − Δt), assuming 

484 an AR1 process with memory of order the eddy timescale, such that Eq.17 does behave as 

485 a dissipative term. 
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486 An infinite series of terms is not warranted for implementation in a numerical model nor 

487 might be valid for all scales relevant here (indeed, our attempts of using a selected number 

488 of terms showed that the simulations did not converge). However, the series did provide 

489 some insights. We interpret the infinite series of hyperviscous terms as a change in the 

490 scale-selective dissipation of the flow, modifying the overall dissipation and the interaction 

491 between scales. However, improvements in the simulation are not solely due to changes in 

492 the overall dissipation, but also via an upscale energy transfer. 

493 c. Energy and Enstrophy 

494 Since the energy is spuriously being dissipated at small-scales in non-eddy resolving 

495 models, inhibiting energy backscatter from small to large scales (Jansen and Held 2014), 

496 this energy needs to be reinjected on average by our parametrization. The energy tendency 

497 due to the parametrization is given by 

∂E ∝ −ψF eddy 

∂t (18) 
Dq 

= ψ|κ|r2 , 
Dt 

where E is the sum of the kinetic energy, 1 (rψ)2, and APE f 2 
(∂zψ)

2 for all three lay-498 
2 2N2 

499 ers. The energy tendency due to the parametrization is then the product of ψ and the 

500 potential vorticity eddy forcing, |κ|r2 Dq . The nonlinear energy tendency term due to the 
Dt 

501 parametrization can be further interpreted as follows. 

502 Suppose that q following a parcel is increasing, Dq > 0, and that r2 Dq < 0. If this occurs 
Dt Dt 

2 Dq 2 Dq 
503 on a cyclonic eddy, i.e. ψ < 0, then ψr > 0. The parametrized energy term |κ|ψr

Dt Dt 

2 Dq 
504 is thus positive, yielding an energy source. Correspondingly, r

Dt > 0 and ψ > 0 yield 

505 an energy source for an anticyclonic eddy. This suggests that the effect of the closure is to 

506 increase the kinetic energy of the flow when the potential vorticity tendency on a parcel has 

507 the same sign as the relative vorticity of the parcel. Assuming that the effect of the eddies 

508 is small compared to the wind forcing and dissipation, leading to Dq ≈ F wind + D, the effect 
Dt 
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509 of the eddies will be to amplify the energy input of the net forcing, i.e. the residual of the 

2 Dq 
510 wind forcing plus the dissipation (with no effect if these are zero). Likewise, if r

Dt has 

511 opposite sign to the vorticity, there will be an energy sink, suggesting the parameterisation 

512 should act to amplify the dissipation of energy. Our parametrization therefore requires some 

513 input of energy from the wind (or buoyancy) forcing, in addition to the presence of small 

514 scale deformation (as discussed earlier). The input of energy will then modify the velocity, 

515 and the nonlinear advective term, leading to an indirect energy transfer between scales. 

516 We argued above that the effect of the closure on the dissipation resembles the effects of 

517 a hyperdiffusion on q. This suggests that it is dissipative for q under certain assumptions. 

518 The fact that it can behave as an energy source, but also dissipate enstrophy, is the desired 

519 qualitative behaviour for a parametrization of QG turbulence (Charney 1971). To further 

520 understand the contribution of the parametrization to the enstrophy budget, consider the 

521 enstrophy tendency due to the parametrization: 

∂G Dq ∝ qκr 2 , (19) 
∂t Dt 

522 where G = 1
2 q
2 is the enstrophy. Using the identity 

Dq Dq Dq � � 
r · qr = r · rq + qr · r 

Dt Dt Dt 
Dq 2 Dq = r · rq + qr , 
Dt Dt 

523 the enstrophy tendency (19) can be expressed as 

∂G Dq Dq ∝ κr · 
�
qr 

� 
− κr · rq. (20) 

∂t Dt Dt 

524 The first term on the right hand side of Eq. 19 does not contribute to the global enstrophy 

525 budget. The second term can act as a sink or source of enstrophy depending on the relative 

Dq Dq 
526 orientation of r with rq. In a location where is tending to amplify q anomalies, 

Dt Dt 

Dq Dq 
527 r will tend to point in a similar direction as rq so that r · rq > 0, yielding an 

Dt Dt 

528 enstrophy source, and similarly an enstrophy sink if the tendency is dissipative, meaning 

Dq 
529 that 

Dt is damping the q anomalies. Hence κ < 0 is required for self-consistency, and 
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530 the parametrization can provide both a source and sink of enstrophy. This demonstrates 

531 that both locally and globally enstrophy can build up in the model, further affecting the 

532 numerical stability of the model. We earlier highlighted that some tuning of κ was necessary 

533 to maintain numerical stability and that the value obtained (and thereby our results) were 

534 sensitive to the viscous term used (r4ψ vs. r6ψ). 

535 The improvement seen in the numerical simulations presented in this work are therefore 

536 due to a careful combination of the sub-grid eddy dissipation (here νr6ψ) and the eddy 

2 Dq 
537 parametrization (κr

Dt ). For the parametrization to be effective, we must ensure that 

538 the build-up of enstrophy at the grid-scale does not overwhelm the solution and that the 

539 nonlinear upscale energy transfer is not inhibited by the viscous terms. 

540 The stochastic backscatter is more effective than the deterministic nonlinear backscat-

541 ter. It is difficult to disentangle the reasons for the differences. However, we hypothesize 

542 that it is the result of a combination of several factors. As described previously, the noise 

543 has a stabilizing impact on the model simulations. The nonlinearity of the model equation 

544 might be pushing the stochastic model into a new (and more stable) regime that the un-

545 parametrized or parametrized deterministic models cannot attain. This can be a consequence 

546 of the sampling of the tails of the PDFs of eddy forcing (with non-zero kurtosis), which the 

547 deterministic parametrization cannot sample adequately. The infrequent but extreme values 

548 of eddy forcing can have a significant impact on the scale interaction in turbulent flows, as 

549 illustrated here. Furthermore, the probabilistic forcing might avoid the frequent forcing at 

550 the singularity, stabilizing the model. 

551 d. Implementation into a primitive equation model 

552 The implementation of our parametrization is tied to a QG potential vorticity equation. 

553 Current ocean climate models do carry momentum, temperature and salinity as prognostic 

554 variables but not potential vorticity which is only diagnosed. We propose two possible ways 

555 forward to implement the parametrization into a primitive equation model. The proposed 
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556 implementations below are defined by imposing a total QG potential vorticity forcing as 

557 given by Eq. 4. Each implementation provides advantages but also caveats. 

558 Two-dimensional implementation: The parametrization can be implemented into the 

559 momentum equations, without adding a contribution into the buoyancy equation, if we 

560 assume that the eddy forcing is purely 2D. This does not mean that the buoyancy forcing is 

561 neglected but rather that it projects directly on the momentum. The u and v momentum 

562 tendencies due to the eddy parametrization can be expressed as follows 

Du ∂ Dq 
= −κ (21) 

Dt ∂y Dt 
Dv ∂ Dq 

= κ , 
Dt ∂x Dt 

563 where q is the QG potential vorticity as defined in Eq. 2. 

564 The curl of the momentum tendency then leads to the following vorticity forcing 

∂ Dv ∂ Du 
� 
∂2 Dq ∂2 Dq 

� 
2 Dq − = κ + = κr . (22) 

∂x Dt ∂y Dt ∂x2 Dt ∂y2 Dt Dt 

565 The newly calculated velocity components from Eq. 21 are the residual velocity components 

566 which include the resolved and eddy-parametrized contribution. The residual velocity can 

567 then be used to advect active and passive tracers in ocean climate models. Online calcula-

568 tions of the potential vorticity and its Lagrangian tendency are therefore necessary for the 

569 implementation in a primitive equation model. The stochastic component can be used as 

∂ Dq ∂ Dq described before, however one might wish to diagnose the PDFs of and , rather 570 
∂y Dt ∂x Dt 

2 Dq 
571 than r

Dt . Other possibilities includes keeping only the relative vorticity in Eq. 21 (namely, 

Dζ Dζ 
572 −κ ∂ and κ ∂ ) for a slightly simpler deterministic implementation. 

∂y Dt ∂x Dt 

573 Three-dimensional implementation: We define the quasi-geostrophic potential vorticity 

574 q as 

q = qu + qb (23) 

24 



575 where qu is the relative and planetary vorticity and qb is the stretching vorticity such that 

qu = r 2ψ + βy (24) 

∂ 
� 
f0
2 ∂ψ 

� 

qb = . (25) 
∂z N2 ∂z 

576 Let us define F , G and B as the forcing terms due to the parametrization on the right hand 

577 side of the zonal momentum, meridional momentum and buoyancy equations, respectively. 

578 The QG PV tendency due to eddy parametrization via the forcing terms F , G and B can 

579 be estimated by deriving an equation for QG PV and is therefore 

Dq ∂G ∂F ∂ 
� 
f0 

� 

= − + B . (26) 
Dt ∂x ∂y ∂z N2 

580 Let 

∂ Dqu ∂ Dqb 
F = −κ − (κ − κb) (27) 

∂y Dt ∂y Dt 
∂ Dqu ∂ Dqb 

G = κ + (κ − κb) (28) 
∂x Dt ∂x Dt 

B = κbr 2 Db (29) 
Dt 

581 where b = f0ψz is the buoyancy which can be shown to yield the following QG PV forcing 

Dq 2 Dq = κr , (30) 
Dt Dt 

582 i.e. the PZM14 closure. The arbitrary parameter κb has been introduced, which partitions 

583 the buoyancy component of the forcing between the momentum and buoyancy equations. 

584 Choosing κb = 0 gives the closure suggested in Eq. 21. Choosing κb = κ puts all of the forcing 

585 associated with qb into B, i.e. into the buoyancy equation. To avoid spurious diapycnal 

586 mixing, the implementation should be performed on isopycnal surfaces, which would also 

587 provide a close match to the QG PV implementation. 

588 The implementation of the PZM14 closure proposed in Eq. 27 is equivalent to the pro-

589 posed implementation of Eden (2010) (note the parametrizations are not equivalent, only 

590 their implementations in primitive equation models). Eden (2010) proposes PV diffusion 
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591 closure as well as a buoyancy diffusion closure. Combining both PV and buoyancy closures 

592 yields an expression for the eddy momentum flux forcing term that appears in the zonal-

593 momentum equation (in a zonal-mean channel model). Similarly to our approach in Eq. 21 

594 and Eq. 27, Eden (2010) assumes a specific forcing form, showing that it gives the desired 

595 forcing in the PV equation. Eden (2010) finds that an additional term, the “gauge term”, is 

596 required to satisfy the momentum constraint. For the PMZ14 closure, the gauge term can 

− ∂F be any contribution to F and G that vanishes when ∂G is computed. 597 
∂x ∂y 

598 Our simulations do not have a direct buoyancy forcing, therefore it is difficult to ar-

599 gue which implementation would lead to more physically based results. Furthermore, it is 

600 difficult to decide how to choose κb sensibly. One could attempt to diagnose it from high-

601 resolution simulation model, as in PMZ14. For example, diagnostic results from the QG 

602 high-resolution model indicate that momentum and buoyancy contributions to r2Dq/Dt 

603 are of similar magnitude (not shown), suggesting that κb = κ would a physically reason-

604 able choice. One could use high-resolution primitive equation models to further diagnose 

605 the different contributions of momentum and buoyancy forcing and validate the QG results, 

606 however this is beyond the scope of the present study. 

607 Both implementations in QG, deterministic and stochastic, do show some sensitivity 

608 to the timestep being used, as any numerical simulation would. Yet, the sensitivity to the 

609 timestep in the current parametrization might be more pronounced since the implementation 

610 requires the knowledge of the time-tendency of nonlinear quantities. In the present work, we 

611 choose to keep the timestep of the high resolution truth and the low-resolution 30km runs 

612 identical. This was done to isolate the role of timestepping in the stability of the simulations. 

613 Runs with increased timesteps up to 4 times the present values lead to results identical to the 

614 ones presented here. As for the QG implementation, the Lagrangian derivative of potential 

615 vorticity is required in primitive equation, therefore there might be some sensitivity to the 

616 timestep chosen to integrate the model which will need to be investigated. 

617 Another (related) approach for an implementation in primitive equation is to use the 
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618 different parts of the non-Newtonian Rivlin-Ericksen stress directly from the momentum 

619 equations, rather than the analogy from PMZ14. Anstey and Zanna (2016) have shown that 

620 the deformation part of the Rivlin-Ericksen stress in the momentum equation can dissipate 

621 enstrophy, conserve energy while mimicking very closely the effect of eddies onto the mean 

622 flow. 

623 6. Summary 

624 We presented a new parametrization of eddy-mean flow interaction for use in eddy per-

625 mitting models. The closure, based on a form resembling a Rivlin-Ericksen stress which 

626 includes a deformation and a memory term of potential vorticity gradient, can be imple-

627 mented as a deterministic or stochastic parametrization. When either formulation of the 

628 parametrization are implemented, we obtained a drastic improvement in the mean state and 

629 the variability of the low resolution models over all wavenumbers and frequencies. 

630 The parametrization requires only resolved variables from the low resolution model, 

2 Dq namely the Laplacian of the Lagrangian tendency of potential vorticity, r
Dt For the 631 . 

632 deterministic parametrization, the parameter (which has dimensions of length squared) de-

633 pends only the low resolution grid size. For the stochastic parametrization, in addition to 

634 the low resolution grid box size, the maximum strength of the wind stress (or the variance 

635 in PV under any forcing - mechanical or thermodynamical) and the local stratification are 

636 necessary input to estimate the contribution of the eddy forcing. The deterministic and 

637 stochastic parametrizations are therefore scale-aware, and flow-aware due to the necessary 

2 Dq 
638 evaluation of the local r . 

Dt 

639 The present results indicate there is a cut-off resolution at which the deterministic 

640 parametrization and the stochasticity do not impact the mean flow. The cut-off is around 

641 the Rossby radius of deformation, but further tests are required to ascertain this value. For 

642 horizontal resolutions smaller than the cut-off value, the model produces instabilities gen-
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643 erating barotropic and baroclinic eddies. The effects of these eddies can be enhanced by 

644 the parametrization, affecting local and global momentum, energy and enstrophy budgets. 

645 The parametrization manages to overcome dissipation, especially in regions where the eddy 

646 forcing has a strong impact on the larger scale flow. 

647 The parametrization captures some key ingredients of geotrosphic turbulence such as jet 

648 sharpening and upgradient momentum fluxes, energy backscatter and enstrophy dissipation. 

649 It requires only spatial and temporal derivatives already computed by the model. Some 

650 numerical stability criteria must be respected and would need to be tested in more complex 

651 models. However in QG, the parametrization also appears to have a stabilizing effect on 

652 the model. It might be necessary to revisit some of the initial assumption when consider-

653 ing primitive equations such as decomposing the forcing into momentum and buoyancy as 

654 described in the discussion, or combine the parametrization with an energy or an enstrophy 

655 equation (Marshall and Adcroft 2010; Marshall et al. 2012). 

656 The stochastic backscatter is shown to be a more efficient and a more stable eddy 

657 parametrization than its deterministic counterpart. Stochastic parametrizations for convec-

658 tion have been fairly routine in atmospheric models (Raisanen et al. 2004; Plant and Craig 

659 2008), especially in the grey zone (analagous to the horizontal resolution cut-off discussed 

660 above for eddy-mean interaction). Stochastic parametrizations in primitive equation ocean 

661 models, mainly at coarse- non-eddying resolution, are slowly being implemented showing 

662 various degrees of success (e.g., Brankart 2013; Andrejczuk et al. 2016; Williams et al. 2016; 

663 Grooms 2016; Juricke et al. 2017). The encouraging results presented here reinforces the need 

664 for developing and implementing scale- and flow-aware stochastic ocean parametrization in 

665 ocean climate models. 
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Table 1. Common Model parameters 
Parameter Value 

L Basin width 3840 km 
LRo * Rossby Radii of Deformation (40, 23) km 
H1, H2, H3 Layer thicknesses (250 m, 750 m, 3000 m) 
f0 Planetary vorticity at mid-y −1 10−4 s
β df/dy 2 × 10−11 −1 −1 m s
g gravity 9.8 ms−2 

0 g Reduced gravity (0.034, 0.018) ms−2 

r Bottom Drag −1 4 × 10−8 s
τ0 Wind stress 2 0.8 N/m
ρ0 Reference Density 3 103kg/m
N Brunt-Väisälä frequency at interfaces −1) (6.82 × 10−3 s−1, 2.56 × 10−3 s� f 0

2 

* 1/L2 = λ where λ are eigenvalues of the equation ∂z ψ
� 
= λψ. Ro N2 ∂z

37 



Table 2. Differing Model parameters 
Resolution Timestep Viscosity] 
Δx [km] Δt [s] ν [m4s−1] 
7.5 600 1.2 × 109 

30 600 5.4 × 1010 

60 1400 2.0 × 1011 

Δx [km] Δt [s] ν [m2s−1] 
120 2000 200 
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